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Production of Nitric Oxide under Ultraviolet-B Irradiation is 
Mediated by Hydrogen Peroxide through Activation 

of Nitric Oxide Synthase
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Excised leaves of kidney bean (Phaseolus vulgaris) were used to investigate the mechanism of NO generation under UV-B
stress. We showed that two signaling molecules, NO and H2O2, were produced in the irradiated leaves. NO release was
blocked by LNNA, an inhibitor of NOS. Application of CAT (EC 1.11.1.6) not only effectively eliminated H2O2 in the leaves, but
also inhibited the activity of NOS and the emission of NO. In contrast, treatment with exogenous H2O2 increased both of
those events. Therefore, we suggest that, under UV-B stress, NO production is mediated by H2O2 through greater NOS activity.
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Industrial development is causing more polluted waste to
be released into the air, leading to a breakdown of the
ozone layer. This thinner layer has induced the enhancement of
ultraviolet B (UV-B) radiation (208 to 320 nm) on Earth
(Blumthaler and Ambach, 1990). Moreover, it has caused
more reactive oxygen species [ROS, including O2

−, hydrogen
peroxide (H2O2), and ·OH] to accumulate, thus destroying
the reductive status in plant cells, which extensively influences
normal morphometrics and organellar structures. These
phenomena can impact plant growth and development, their
photomorphogenesis, photosynthesis, respiration, flowering,
and pollination (Jordan, 1996). In the chloroplasts especially,
UV-B can oxidize and degrade the Photosystem II protein
complex (Friso et al. 1994), reduce Rubisco activity (Jansen
et al., 1998), decompose chlorophyll and carotenoids (Vass et
al., 1996), and inhibit the expression of photosynthetic genes
(Strid et al., 1994), thereby leading to diminished fertility
(Vega and Pizarro, 2000).

The accumulation of ROS not only elicits oxidative stress
in those cells, but it also acts as a signaling molecule to acti-
vate plant resistance (Foyer et al., 1997). In the presence of
UV-B irradiation, the production of salicylic acid, ethylene,
and jasmonate then induces the expression of defense
genes (Mackerness, 2000). For instance, in Arabidopsis seed-
lings, O2

− and H2O2 can potentiate PDF 1.2 and PR-1
expression, respectively, to resist UV-B damage (Mackerness
et al., 2001).

Nitric oxide (NO) is a bioactive molecule involved in
many physiological processes in animals, such as vasorelax-
ation, platelet inhibition, neurotransmission, cytotoxicity,
and immunoregulation (Anbar, 1995). NO also acts as an
important signaling molecule in plants, inducing germination
in lieu of red right (Beligni and Lamattina, 2001), affecting
tissue growth and development (Leshem and Haramaty,
1996; Durner and Klessing, 1999), and enhancing cell

senescence (Pedroso and Durzan, 2000; Pedroso et al.,
2000). This molecule also may mediate plant responses to
biotic and abiotic stresses; its role has been suggested in
responses to drought, salt, and heat stresses, as well as dis-
ease resistance and apoptosis (Leshem et al., 1998; Durner
and Klessing, 1999; Beligni and Lamattina, 2001; Garcia-
Mata and Lamattina, 2001; Zhao et al., 2007). NO is syn-
thesized by NO synthase (NOS) in animal cells. NOS is also
active in plants (Ninnemann and Maier, 1996), but can be
hindered by Nω-nitro-l-Arg (LNNA) and NG-monomethyl-l-
Arg, two known inhibitors of mammalian NOS. This
enzyme is extensively activated in plants under numerous
stresses (Zhao et al., 2004, 2007; Foresi et al., 2007). NO is
also closely related to plant resistance to UV-B stress, induc-
ing programmed cell death and inhibiting mesocotyl elonga-
tion under irradiation (Rao and Davis, 2001; Zhang et al.,
2003). A defense gene, Chs, is regulated by NO to resist
UV-B (Mackerness et al., 2001). However, the precise
mechanism for generating nitric oxide remains elusive.

There is significant overlap between the NO- and H2O2-
signaling pathways in plants (Jih et al., 2003; Zeier et al.,
2004; Zago et al., 2006), but some contradictory results
have been reported about the relationship between NO and
H2O2 production, with several studies showing that NO reg-
ulates ROS existence in plants (Clark et al., 2000; de Pinto
et al., 2002) and others indicating that this generation of NO
and H2O2 is interdependent (Neill et al., 2002; Bright et al.,
2006; Zhao et al., 2007). Our previous research with leaves
of kidney bean (Phaseolus vulgaris) demonstrated that NO
could stimulate the activities of SOD, APX, and CAT to elim-
inate H2O2 (Shi et al., 2005). This led us to suggest that
hydrogen peroxide possibly affects the generation of NO.
The objective of our current study was to investigate this
functioning under UV-B stress.
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MATERIALS AND METHODS

Plant Material

Seeds of kidney bean (Phaseolus vulgaris) from the Gan-
Su Seed Company (GanSu Province, China) were surface-
sterilized with 0.5% NaOCl solution for 20 min. After being
washed for 10 min in tap water, they imbibed in distilled
water for 12 h, then were placed overnight between layers
of moistened cheesecloth at 25°C. These new germinants
were planted in sterilized sand and grown for 10 d in a
controlled-environment culture chamber, under conditions
of 25°C, 60% relative humidity, and a 12-h photoperiod
(photosynthetic flux of 120 μmol m−2 s−1). Expanded leaves
were excised for our treatments.

UV-B, LNNA, and Catalase (CAT) Treatments

Leaf samples were initially floated on distilled water, 200
μM LNNA, or 200 U mL−1 CAT (these two reagents prepared
with sterilized water). After being pumped for 3 min, the
dishes were transferred to a chamber with UV-B irradiation
sources (TL-40W/12UV; Philips, Eindhoven, The Netherlands)
for a time course of 0, 2, 6, 12, or 24 h of exposure. The
lamps were filtered with 0.13-nm-thick cellulose diacetate
(transmission down to 280 nm) for UV-B radiation to remove
any ultraviolet C component emitted by the UV-B source.
Spectral irradiance was determined with a spectroradiometer
(Optronics Model 742; Optronics Laboratories, Orlando, FL,
USA); light intensity at the sample surface was 15 μmol m−2 s−1.
During all treatment periods with UV-B, LNNA, or CAT, the
solutions were refreshed every 12 h. When the experiments
were concluded, the excised leaves were collected for either
immediate use or storage at -80°C. 

H2O2 Treatment

Excised leaves were incubated in cultured dishes containing
H2O2 at a concentration of 0, 1, 2, 5, or 10 mM. Following
their pumping for 3 min, the dishes were exposed to only
visible light (120 μmol m−2 s−1) for 20 min. Afterward, the
leaves were collected for analyses of NO production and
NOS activity. 

Determination of H2O2 Content

H2O2 content was determined via the POD-coupled assay
protocols described by Veljovic-Jovanovic et al. (2002). Excised
leaves (approx. 1 g) were ground in liquid N2 and the
powder was extracted in 2 mL of 1 M HClO4 with insoluble
polyvinylpyrrolidone (5%, w/v). The homogenate was
centrifuged at 12,000g for 10 min, and the supernatant was
neutralized with 5 M K2CO3 to pH 5.6 in the presence of
100 μL of 0.3 M phosphate buffer (pH 5.6). This solution
was centrifuged at 12,000g for 1 min, and sampled were
incubated for 10 min with 1 unit of ascorbate oxidase prior
to our assays. The reaction mixture was composed of 0.1 M
phosphate buffer (pH 6.5), 3.3 mM 3-(dimethylamino) benzoic
acid, 0.07 mM 3-methyl-2-benzothiazoline hydrazone, and
0.3 units of peroxidase. The reaction was initiated by adding
200 μL of sample. Changes in absorbance at 590 nm were
monitored at 25°C.

Determination of NOS Activity

NOS activity was assayed according to the method of
Murphy and Noack (1994), with some modifications. Excised
leaf tissues (approx. 2 g) were homogenized in 5 mL of
homogenization buffer (50 mM triethanolamine hydrochloride
at pH 7.5) that also contained 0.5 mM EDTA, 1 μM leupep-
tin, 1 μM pepstatin, 7 mM glutathione, and 0.2 mM phenyl-
ethylsulfonyl fluoride. After centrifugation at 9000 g for 30
min, the supernatant was collected and re-centrifuged at
10,000 g for 45 min at 4°C. This supernatant was used for
NOS determinations. Activity was analyzed by a hemoglobin
assay (Murphy and Noack, 1994), and protein concentration
was obtained as described by Bradford (1976).

Determination of NO Content

NO content was determined with some modifications to
the method of Murphy and Noack (1994). Briefly, 15 disks
(1-cm diam.) of excised leaves were incubated for 5 min
with 100 U of catalase and 100 U of superoxide dismutase
to remove endogenous ROS before the addition of 10 mL
of oxyhemoglobin (5 mM). After 2 min of incubation, nitric
oxide was measured spectrophotometrically by calculating
the conversion of oxyhemoglobin to methemoglobin per the
formula: C (mM) = (OD577-OD591)/11.2.

Western-Blot Analysis

SDS-PAGE was performed as described by Laemmli
(1970), solubilizing and then separating 50 μg of total pro-
tein on a 7.5% (w/v) acrylamide gel. After electrophoresis,
the proteins were electro-transferred to a nitrocellulose
membrane, which was blocked for 60 min with 5% (w/v)
nonfat milk in 0.05% (w/v) Tween 20, 10 mM Tris (pH 8.0),
and 150 mM NaCl. A polyclonal antibody raised against
NOS was added and incubated with the membrane
overnight, then an alkaline phosphatase-coupled secondary
antibody was added before incubating for 1.5 h. Color was
developed with a solution containing nitroblue tetrazolium
and 5-bromo-4-chloro-3-indolylphosphate.

RESULTS

NO Production and NOS Activity under UV-B Irradiation

Flux of nitric oxide was stimulated by UV-B exposure (Fig-
ure 1A). The rate of NO release from excised kidney bean
leaves increased gradually with lengthening time of radia-
tion, reaching its maximum value, about 250% of the con-
trol, after 24 h of treatment. 

Effects of LNNA on NO Production under UV-B Irradiation

Generation of NO in response to UV-B was obviously hin-
dered by LNNA. After 12 h and 24 h of such treatment,
rates of release were inhibited by 55% and 50%, respec-
tively (Figure 1B).

Effect of CAT on H2O2 Production under UV-B Irradiation

Although H2O2 production was stimulated by UV-B expo-
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sure, this trend was inhibited in the presence of CAT (Figure
2A). Peroxide content increased gradually, in a time-depen-
dent manner, reaching a peak, 198% of the control, after 24
h of irradiation. Treatment with 200 U mL−1 CAT dramatically
inhibited this trend. After only 6 h of UV-B application, the
H2O2 content was at its maximum value before declining
gradually to a level close to normal at 24 h post-treatment.

Effect of CAT on NOS Activity and NO Release under UV-
B Irradiation

CAT treatment reduced NOS activities and the rates of
NO release in excised leaves under UV-B stress. For exam-
ple, 200 U mL−1 CAT depressed those rates to 64% and 74%

Figure 1. NO production in excised leaves from kidney bean, under
UV-B irradiation alone (A) and together with LNNA treatment (B).
FW: Fresh weight. Mean values and SE were calculated from 3 inde-
pendent experiments. 

Figure 2. Effects of CAT on H2O2 production (A), NO production (B),
and NOS activity (C) in excised leaves from kidney bean under UV-B
irradiation. Mean values and SE were calculated from 3 independent
experiments. 
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of normal after 12 h and 24 h, respectively (Figure 2B),
while NOS activities were reduced to 61% and 55% after 12
h and 24 h, respectively (Figure 2C).

Effect of H2O2 on NOS Activity and NO Production 

Compared with our CAT results, exogenous application of
H2O2 influenced NOS activities and NO production in an
opposite manner, with both being gradually enhanced as
peroxide concentrations increased. The highest levels were
achieved upon treatment at 10 mM H2O2, where values for
NOS activity and NO release were 182% and 188% of the
control, respectively (Figure 3A, B). 

Western-Blot Analysis of NOS Expression

Western-blot analysis showed that irradiation caused a

decline in the steady-state protein of NOS after both 12 h
and 24 h of CAT treatment. In contrast, the application of
H2O2 increased NOS expression as the concentration rose
(Figure 4A, C). 

Our two Coomassie Bright Blue-stained acrylamide gels
indicated that equal amounts of proteins were loaded for
these western-blot analyses (Figure 4B, D).

Figure 3. Effects of H2O2 on NO production (A) and NOS activity (B)
in excised leaves from kidney bean. Mean values and SE were calcu-
lated from 3 independent experiments. 

Figure 4. Western-blot analyses for effects of CAT (A) and H2O2 (C)
on NOS expression under UV-B irradiation. Coomassie Bright Blue-
stained gels (B, D) show equal loading of proteins. Immunoblotting
results indicate similar trends for protein expression in 3 independent
experiments.
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DISCUSSION

Here, we provide evidence for the involvement of H2O2

in the production of nitric oxide by irradiated plants. Hydro-
gen peroxide, generated under UV-B stress, served as a sec-
ond messenger for the induction of NOS expression, i.e.,
activating NO, another signaling molecule. 

Nitric oxide functions in multiple plant-resistance reac-
tions against environmental stresses (Leshem and Haramaty,
1996; Garcia-Mata and Lamattina, 2001; Mackerness et al.,
2001; Wu et al., 2007; Zhao et al., 2007). Shi et al. (2005)
have reported that the application of an NO donor could
aid in resistance to UV-B and the avoidance of oxidative
damage to kidney bean leaves. Because it is reasonable to
think that NO responds to UV-B, we first measured its pro-
duction in stressed leaves and found that its release was
obviously higher during irradiation exposure. NO probably
arises from a NOS-like enzyme under exogenous stimula-
tions (Zhang et al., 2003; Zhao et al., 2004, 2007). Our
data also demonstrated that the release of nitric oxide could
be arrested by LNNA, a special NOS inhibitor. Although the
generation of NO is thought to depend upon nitrate reduc-
tase (Garcia-Mata and Lamattina, 2003), our results indi-
cated that the increased NO flux was primarily due to NOS
activity in leaves excised from irradiated kidney bean plants.

Excessive ROS not only damages plants, but also induces
their resistance reaction against harmful factors (Foyer et al.,
1997). H2O2, a well-known oxidant, can be used as an
index of oxidative damage, acting as a signaling molecule
related to such resistance. Consequently, we also detected
H2O2 production under UV-B stress, with contents becom-
ing gradually enhanced as this stress period lengthened. Fur-
thermore, catalase, a H2O2 scavenger, dramatically inhibited
this enhancement. 

Two signaling molecules -- NO and H2O2 -- were pro-
duced in the presence of UV-B. Therefore, we utilized exog-
enous applications of CAT to examine the effect of peroxide
on NO generation. Such treatment inhibited both NO pro-
duction and NOS activity. Western-blot analysis provided
strong evidence for this catalase-depressed NOS expres-
sion. NO is mainly synthesized by NOS; here, CAT elimi-
nated H2O2 in excised leaves under UV-B. Therefore, it is
possible that CAT restrained NOS expression so as to cause
this NO release to be diminished due to the reduction in
H2O2 content during irradiation. 

To verify this, we also examined the effect of H2O2 on NO
production and found a situation that was the reverse of
that with CAT. Here, both NO production and NOS activity
were excited by H2O2, the degree of response being corre-
lated with its concentration. Western-blot analysis again con-
firmed that the amount of NOS protein was enhanced by
hydrogen peroxide, providing further positive evidence for
this deduction.

We believe that all of these results are the first to demon-
strate that, under UV-B irradiation, H2O2 functions as a sec-
ond messenger for inducing NOS expression. This may
account for the enhanced release of nitric oxide. Based on
our current and previous data (Shi et al., 2005), we propose
that this is a feedback-regulation mechanism for NO pro-
duction in response to UV-B exposure.
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